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3. Phys.: Cnndenb Matter 4 (1992) 5371-5381. Printed in the UK 

Transport in ionic conducting glasses: II. Scaling relations 
and approximate power law behaviour 

A Hunt 
Earth Sciences Department, U n h i t y  of California, Riverside, CA 92521, USA 

W e d  5 September 1991, in final form 17 Febtuary 1992 

Abstract. A recent theory of transport in ionic conducting glasses treats dielectric 
rrlaxation in a pair approximation at high frequencies, an augmenkd pair approximation 
at intermediate frequencies, and a cluster theory at low frequencies (below the u-peak 
in the imaginary pan of the dielectric constant, E Z ( W ) ) .  The results were shom to 
reproduce the general features of the relamtion. Here the analysis of the results is 
continued, expressions for the approximate power of the high-frequency conductivity 
(the exponent s in ~ ( w )  c( w') are derived and the degree of the universality of the 
Barton-Nakajima-Namikawa relation is discussed in view of the non-universalily of the 
power s. 

1. Introduction 

Recently an approach to calculating the frequencydependent conductivity in ionic 
conducting glasses has been developed (Hunt 1991a) that can explain the general 
features of dielectric relaxation in these systems. This article develops further the 
mathematical treatment in the previous article, referred to as I. 

In the previous article the pair approximation of Pollak and Pike (1972) for the 
high-frequency conductivity (which is consistent with the well-known w s  behaviour) 
was shown to break down at a frequency wc, proportional to the DC conductivity. 
An enhancement of the conductivity in some range of frequencies above wc was 
proposed in the form of a multiplicative factor expressing the tendency of ions to 
hop in correlation with each other. Below we, the manifestly non-local relaxation 
requires a cluster treatment. The assumed sequential correlation of critical (rate 
10 . .  ' I  - - wc) hops delays equilibration and makes the frequency dependence of u ( w )  - 
uDc on w non-analytic in the limit of zero frequency. The sum of appropriate cluster 
currents in accord with cluster statistics (chosen compatibly with percolation theory) 
yields for u ( w )  a universal supralinear frequency dependence. Combined with the 
sublinear frequency dependence above wc, this generates the observed (see Jonscher 
(1981), Goetze (1991), among others) broad asymmetric loss peak (a-peak) with 
peak frequency proportional to the DC conductivity (the Barton (1966)-Nakajima 
(1972)-Namikawa (1975) relation). 

The upward curvature (Dixon er al 1990, Ngai 1991) of the high-frequency tail 
of e 2 ( w )  is also generated on account of the enhancement of O ( W )  at frequencies 
somewhat larger than wc. 

Similar results have also been obtained through computer simulations by Maas er 
af (1991). This work also emphasized a competition between the effects of disorder 
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(dominant in parallel procwes at high frequencies) and of Coulomb interactions 
(particularly important in series processes at low frequencies). 

Although no comprehensive studies refer to a universal low-frequency power 
law, ColeCole plots (Kawomura ef a1 1987, Abelard and Baumand 1984, Martin 
and Angell 1986) seldom reveal Debye behaviour at either low or high frequencies 
(semicircles centred on the real axis). More commonly they yield skewed curves 
or semicircles with centres below the real axis. In either case the slope m of the 
imaginary part, E ~ ,  versus the real part, E ~ ,  of the dielectric constant in the limit 
of zero frequency (approaching the horizontal axis) is not infinite (as in single-mode 
Debye relaxation). The low-frequency power (defined here to be p )  is related to m 
by p = (2/r)lcot-'ml. 

Results for the high-frequency power s can be deduced from parameters relating 
to stretched exponentials; Elliott and Henn (1990) summarize the results of Boesch 
and Moynihan (1975) and Ngai ef a! (1984) as giving either temperature-independent 
values of s, or values that slowly increase towards 1 with decreasing temperature. On 
the other hand, Lee er a1 (1991) report that s rapidly reaches 1 as the temperature 
is lowered, and results of Jain and Mundy (1987) seem to indicate a minimum for s. 
Whether or not all these results can be consistent with the general type of approach 
given here is unclear, but general conditions that affect the value of s are discussed 
here, while more specific effects due to correlations between hopping length and 
hopping energies are discussed by Elliott and Henn (1990). 

It should be mentioned that (ionic conducting) glasses have been classified as 
fragile or strong depending on the temperature dependence of their DC transport 
coefficients or relevant (percolation) relaxation times in the vicinity of the glass tran- 
sition (Angell 1990). This classification has turned out to be somewhat arbitrary, 
however, as no clear boundary between the two classes can be established. It is 
believed here that such a continuous range of variation (from Vogel-Fulcher-type 
behaviour to simple activated behaviour) can easily be accounted for by differences in 
the distribution of barrier heights. This point will be discussed further, but no solid 
conclusions can be drawn. The uncertainty in the temperature dependence of the DC 
conductivity corresponds to the uncertainties in s mentioned above. 

All three tendencies for s have been predicted by theoly. Long et af (1982) predict 
that s should pass through a minimum, whereas Elliott and Henn (1990) consider a 
picture that leads to 1 - s (x T, and Henn et R! (1991) suggest physical conditions 
that lead to a nearly temperature-independent value of s. Here the fact that wc 
defines the percolation of pair processes leads to the result, 1 - s cx -(In uDc/u0)-l 
(derived here as an average s, and suggested by Hunt (1992a) to be universal) with 
bo the prefactor of the DC conductivity, bDc. Specific modications such as those 
considered by Elliott and Henn (1990) or Henn el a! (1991) may lead to results that 
differ in detail. 

If 1 - s cx - ( lnuDc/uo)- '  then different temperature dependences for uDc 
should imply different values for s. Determinations of s, however, are not always 
consisten5 the value depends on whether one constructs at some specified w a tangent 
to the curve of ~ ( w ) ,  whether one takes the value near the onset of dispersion, or 
whether one measures an average s. These procedures should not generally be 
expected to lead to the same value for S. If multiplicative logarithmic factors are 
involved (as in the approach here), the first method above should give a temperature- 
independent s, the value obtained by the second method will depend critically on 
whether the distribution of barrier heights is monotonic in energy, and the third 
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method will lead to the universal relationship mentioned. The value of s determined 
by the second method can be contaminated by the curvature associated with the 
approach to DC conduction (onset of dispersion). Thus the experimental situation 
has not yet been resolved. 

The real part of the low-frequency conductivity has been shown in I to be ex- 
prekible in the form, 

4 w ) / % c  = s(w/w,)  (1.1) 

where g ( z )  = 1 + zltd-df (if numerical constants are suppressed). Here d is the 
dimension of the ‘surface’ in which transport is confined, and in which the clusters 
with fractal dimensionality d,  are formed. In the remainder of this article, d will be 
assumed to be three with d ,  about 2.6. If the function g has the form of a power 
law, and if its range of validity is restricted to 0 < w < we, a contribution to ~ ~ ( 0 ) .  
the real part of the dielectric constant at zero frequency, which has the form 

&,(O) 0: “DC/% (1.2) 

is generated by application of Kramers-Kronig dispersion relations. Such an expres- 
sion is consistent with the BNN relation 

OK = BWcE1(0) (1.3) 

(the contribution to ~ ~ ( 0 )  from the pair approximation regime will be discussed later 
in this article). 

It is clear that the pair approximation yields a value of s that is intimately linked 
with the distribution of relaxation times in the glass, which itself is non-universal. Thus 
there is no reason to expect s to be universal, and in fact it is not. However, the 
BNN relation is often considered to be universal, in the sense that the proportionality 
constant B of (1.3) is considered to have a universal value. It will be demonstrated 
clearly in this work that a non-universal expression for s is incompatible with a 
universality in the BNN relation. The calculations given here give a general tendency 
for s to increase to 1 as T approaches zero; for unremarkable distributions of barrier 
heights and in the case where no correlation between barrier height and hopping 
length exists, 

s = 1 - qkT/E,,  (1.4) 

where q is a number, kT the Boltzmann constant times the temperature, and E,, the 
activation energy of the DC conductivity. This expression is formally identical to that 
of the correlated barrier hopping model of Elliott. The constant B in (1.3) will be 
seen to acquire some dependence on T as well as on E,,. Nevertheless, if the variation 
in s-values is not too great (as seems often to be the  case), and if the contribution 
to e ( 0 )  from the pair approximation regime is not too large compared with the 
contribution from the low-frequency regime, the variation in B with temperature and 
composition may be weak. In fact, a weak temperature and composition dependence 
of B has been noted (Dyre 1988). 

It is admitted that a rigorous treatment of these systems has not been formulated. 
It is useful, however, to carry out the mathematical analyses described here, in order 
to understand what further general conclusions can be drawn from the model, and to 
clarify some general relationships, about which confusion still exists. 
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2. The BNN relation and the power s 

It was mentioned above that the low-frequency conductivity can be written in the 
form 

a ( w )  = om[l + K(d)(w/w,) l fd-dt  1. (2.1) 

This expression was derived in I. At w =wc = vph exp( -E , /kT)  one has 

u ( w c )  = am[l + IC(d ) ] .  (2.2) 

In the above, vph is a phonon frequency, about 10l2 Hz, and Eo is the activation 
energy of the DC conductivity. It was also argued that 

uDc = w,e’rO/kTlZ (2-3) 

where ro is a typical hopping distance of the order of the ion separation (at high 
ionic concentrations) and 1 is the typical separation of pairs with barrier heights within 
kT of Eo, i.e. critical relaxation times T~ = w;’. ro can be taken as an average 
value since 7 is assumed to  be a function of E only; i.e. whatever variation ro may 
have is assumed to be independent of E, allowing ro to be averaged separately 
from the integration. (The correlated barrier hopping (CBH) model of Elliott relaxes 
this approximation making E an explicit function of the hopping length.) The pair 
approximation yields 

where n( E) is the concentration of pairs with separation ro and barrier height E. 
The range of the integration is defined by the condition T l / w  which serves to 
maximize the real part of the pair response. The particular choice of a range of 
energies equal to 2kT (rather than say kT, or 4kT) is of course arbitraw. Near 
wc faster processes may be blocked through Coulomb repulsion by slower (critical) 
transitions (with wij U,) on the same ‘percolation’ path, with the result that 
their contribution to the polarization current is delayed so .as to be in phase with 
the external field. The enhancement related to multiple hopping (Pollak 1974) is 
represented by a multiplicative factor giving the number of ions freed by the breaking 
of the log-jam, Le. the ratio of the number of faster transitions to critical transitions 
located on the one-dimensional conducting paths. This number is approximately i /ro 
(near w,), so in the multiple-hopping regime 

Evaluated at w = wc this yields 

E o t k T  

0 -  T 
4 w , )  = ~ U C  + (wearol /kT)  n( E )  d E  = uDc( 1 + 1) (2.6) 
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in view of the definition of 1 

and (23) for the DC conductivity. The latter equality of equation (26) can also be 
arrived at (as in Almond el af 1982) by a strictly geometrical procedure relating the 
frequency at the onset of dispersion to the DC conductivity (when the frequency. 
dependent additive term is nearly linear in w). Numerical constants in the frequency- 
dependent portion of the conductivity as well as in the DC conductivity have been 
suppressed because of the lack of knowledge of the distribution of relaxation times, 
and because numerical constam derived from cluster statistics of percolation theory 
are not known. Moreover the discussion of the lengths that appear in the expressions 
for the conductivity is only qualitative. Equations (26) and (25) were given in I; 
subsequent quantitative analysis is new, but is based on the results of I. 

As a consequence of (2.6), it must also be possible to express the conductivity for 
w > wc in the form 

4 w )  = aDch(w/w,) (28) 

with h some scaling function. The experimental proportionality of u ( w )  to a power 
less than one implies therefore that 

with A an unknown constant. In the type of approach described here, the power law 
formulation can only be approximate; methods of determining s consistent with any 
theory based on a pair approximation will be discussed later in this article. We now 
have 

with p > 1 and s < 1 generating the broad asymmetric loss peak While experimental 
results are not generally presented in this form, the non-analytic behaviour resulting 
from p < 2 is consistent with the observed behaviour of typical Cole-Cole plots 
mentioned in the introduction. The lack of knowledge of A and IC( d )  will hamper the 
subsequent analysis, but cannot be avoided at this time. In any case K ( d )  is expected 
to be a universal anstant (from I) while A can vary from system to system. Still, it is 
expected that A should not be too different from h' (otherwise the assumption that 
we is also the loss peak frequency would be inconsistent; also significant differences 
in scaling relationships in different systems could result). On the other hand, if A is 
not smaller than K ( d ) ,  a significant non-universality in B can result if s approaches 
1 too nearly. It should be emphasized that these uncertainties are not specifK to 
this theory as they are in fact a consequence of internally inconsistent summaries of 
experimental results. 

A further complication is that at large frequencies the frequency-dependent term 
in ~ ( w )  must be reduced by the factor roll, consistent with a 'bare' pair approxima- 
tion. 
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Application of the Kramers-Kronig dispersion relations to a conductivity of the 
form of (2.10) yields 

ignoring a numerical factor of order unity. This relationship may be written as 

~ o c - w , & ( 0 ) [ l C ( d ) / ( p - l ) + A / ( l  -s) ] - ' .  (2.12) 

As pointed Out, if s has a temperature dependence, the BNN relation 

om = E w ~ E ( O )  (213) 

cannot have a universal value for B. In fact, A probably has a factor 1/3 arising 
from directional averaging of pairs that is not present in K ( d )  (since clusters are 
on the average isotropic), so an approximate universality may be possible; but since 
other unknown numerical factors enter into these constants, further speculation on 
this point is not useful. 

In I it was assumed that 

defines the activation energy E,, of the DC conductivity, where oi is a critical value of 
the bond 'percolation' probability. Comparing this amafz with (2.7) gives 

l-' = C 1 ~ i E O / k T  (2.15) 

E / E , ,  

n(E) = ( C 2 / E & ' ) f ( E / E 0 ) .  (2.16) 

with C, an unknown constant. As can be Seen from the substitution x 
equation (2.14) implies that n( E) have the following form: 

A specific example might be a Gaussian: 

. (E)  = (c,/EoTg)exp[-(E- E ' ) ? / ~ ~ E O Z ]  (2.17) 

with E' a typical barrier height and the factor L3 introduced to allow consistency with 
the percolation condition (2.14). Such a density of relaxation times has been treated 
in a random walk approach by Bassler (1987) and by Richert and Baessler (1990) who 
argued that a DC viscosity q (a exp(To/T)')  would result (steeper than Arrhenius). 
In any case it was then shown that an expression for the glass transition temperature, 
i"' a E,, could be derived by setting the relevant relaxation time determining q equal 
to the experimental time (inversely proportional to the cooling rate, dT/dt). The 
results for the viscosity and for Tg were found to agree with experiment in a large 
number of systems. It is interesting that the same proportionality to E, (and a similar 
dependence on dT/dt)  develops if the theory of Hunt (1989, 1991b) is applied (to 
be strictly comparable, it would be necessary to have uDc o( q-*, which is only true if 
effective-medium theories apply). In this case the proportionality of TB to the width of 
the Gaussian is clearly a consequence of the percolation of pair processes at an energy 
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E,,; the increase in steepness of 7) compared to a simple Arrhenius behaviour could 
be interpreted as a crossover from an effective-medium theory dominated by a typical 
relaxation time (proportional to exp E ' / k T )  to s percolation theory dominated by 
an optimal relaxation time (proportional to exp E,,/kT). Since the glass transition 
occurs in a temperature range not too far from this  crossover, both approaches seem 
to work roughly equally well. 

We return to the suggestion (Hunt 1992a) that s can be related generally to DC 
transport coefficients. If, e.g., uDc cx exp(-E,(T)), then s should obey 1 - s 0: 
Cc(2')-l. If such an expression for s (essentially a geomeuic argument) is valid also 
at higher temperatures where uDc cx 0-l a temperature dependence of E,(T) such 
as that derived by Richert and Baessler would be consistent with 1 - s a TZ. This 
is a much more rapid approach to 1 with a reduction of T of the exponent s- 
somewhat similar to the behaviour observed recently by Lee et al (1991). Although 
these topics are not exactly the subject of this paper, they serve to illustrate the 
connections between thermal, mechanical and dielectric relaxation, and the relevance 
of the particular distribution of relaxation times; they may also contribute to a more 
general scheme for interpreting experiment. 

Substituting (216) into (2.5) yields, after some manipulation 

.(W) = VDc ( 1  + (W/WC)f[kTln(v,h/w)/E,l/f(l)) 
= U D C { ~  t (w/w,)f l l -  k T M w / w , ) / E a l / f ( ~ ) l  (2.18) 

if In(vph/w) is replaced everywhere by In(uph/w,) - In(w/w,) = E,, /kT - 
ln(w/w,).  Moreover, the assumption has been made that kT/E, ,  < 1 allowing 
the neglect of terms with a higher order of k T / E o  and thereby the simple repre- 
sentation above. It is possible to show that if k T / E a  < 1/10 (required for the 
superiority of percolation theory compared with effective-medium theories) the mag- 
nitude of the first neglected term is less than 1/500 of the term retained as long as 
f is not too strongly varying. Such a condition can be quantified by demanding that 
the second derivative of f evaluated at f = 1 be less than or equal to f(1).  

Defining w / w ,  EE w' and u(w) /uDc EE u'(w), and using the fact that E,, /kT = 
-ln(uDc/uo) - l n &  permits rewriting (2.18) in the following form: 

U'(W') = 1 +W'f[l  t l o g o ~ , w ' ] / f ( l ) .  (2.19) 

An exact result for the function f (in the range E < Eo) could be extracted from 
the conductivity data like this: 

f[l t l o g a ~ c w ' ]  = f ( l ) (u ' (w')  - l ) /w '  (2.20) 

(essentially a scaled form of Imi(w)) if the measurements could be made in the limit 
of zero temperature. Of course, even at very low temperatures the relaxation is so 
slow that measuremen& are possible only at very high frequencies. Use of such a 
relation at higher temperatures involves the risk of missing significant structure, as 
all features of f ( E / E , )  on a scale smaller than k'T will not be even approximately 
reproduced. If the magnitude of such a rapid variation of f is small, it will not be 
observed at all. 

It must also be noted that the ideal scaling form of (2.19) breaks down at high 
frequencies where the enhancement factor l /ro gradually disappears. This causes 



5318 A Hun; 

an upward curvature of the relaxation spectrum, e 2 ( w ) ,  as the (negative) slope is 
reduced. From experimental results on ionic conducting glasses (Ngai 1991) and also 
on dipole glasses (Dixon el a/ 1990) such results have been reported; the failure 
of scaling pictures due to such an upward curvature at high frequencies has been 
attributed to the importance of pair relaxation (Ngai 1991). 

Equation (2.18) is probably more useful in that it demonstrates that at the onset 
of dispersion the power s must be expressible as 

s = 1 - &T/Eo 

4 = ( l / f ( l ) ) d f / d r I = = i  (2.22) 

(2.21) 

where 

at least for a frequency range that does not depart too radically from the onset of 
dispersion at wc (so that the argument of f does not differ greatly from 1). Equation 
(2.21) is  formally identical to one derived for the cBH model by Giuntini er a1 (1988). 
A specific result that can be proven is 

s = 1 - p k T / E o  (2.23) 

if 

n ( E )  cx EP. (2.24) 

It B also evident that 

s = l  (2.25) 

if n( E) = constant obtains as a special case of (2.23). 

tained to an average slope over the entire frequency range wc < w < vph. Take 
An alternative method for calculating s is now given that relates the value ob- 

EO 
= (aDC13/uc) 1 n( E) d E  [tan-' exp( E / k T )  

- tan-'(exp(E - E, , ) /kT)]  

= uDc(13xa/2w,r3 

= (cDc/wc){l -exp[-(l - s)Eo/Wl/( l  - 8 )  (2.26) 

since the difference between the two arctangent functions can be approximated as a / 2  
over nearly the entire energy range 0 < E < Eo. Here (2.9) has been substituted 
for o ( w )  on the left-hand side of the equation. As a consequence one has 

s = 1 -(Z/aci)(~, , / l)~{l -exp[-(l - s ) E , / k T ] )  % 1 - C'kT/E,  (2.27) 
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where (to a first approximation) C' = 2C, /?ra .  If one neglects the exponential 
factor (permissible i f s  not too near 1) one obtains 

for an average power. In the limit p -t 0, however, 5 becomes very nearly 1 and the 
exponential factor must be included in the analysis. In this case, use of I'HiSpital's 
rule in (2.26) yields C' = p ,  and s = 1 - p k T / E o .  Thus, a constant density of 
bamer heights, p = 0, yields s = 1 throughout the frequency range. 

Another relationship, which may have some use, is obtained by integrating the 
frequency-dependent conductivity from wc to vDh, i.e. 

C ' = p + l  s 1 - (1 + p ) k T / E o  (2.28) 

EO 
= ( q d 3 / w c ) 1  T-'4E)dEI(Vph -4 

+ .r-'(tan-'w,r - tan-'  vph7)] 

- ( n / 2 ) N ( 2 / k T ) I  (2.29) 
where N ( l / k T )  is the Laplace transformation of n(E)O(Eo - E), and with z = 
l / k T  and S ( z )  the Heaviside step function of E. This calculation uses again the 
approximation (valid when E o / k T  > 1) that the difference of the inverse tangent 
functions in the range 0 < E < Eo is a / 2 ,  and the fact that pairs with E > Eo are 
irrelevant to transport These approximations are consistent with the application of 
percolation theory. Although inversion of this formula would yield an approximate 
value of n(E) ,  it is not likely that this will be very useful. Apart from the dficulty 
of the cut-off at Eo, and the fact that both N (  l / k T )  and N ( 2 / k T )  appear in the 
same expression, one would need N for all temperatures; but at high temperatures 
the assumption of the validity of percolation theory is incorrect. 

The results given here demonstrate that the frequently (but not universally) ob- 
served tendency of s to approach 1 with a reduction of temperature follows naturally 
from this approach. The absence of the factor ( l / r o )  al. higher frequencies compli- 
cates the analysis, but it can also be shown (Hunt 1991c) (by a Kramers-Kronig-lype 
analysis as in (2.26) and (2.27)) that in each regime separately a relationship of the 
form of (2.27) must hold (with a small difference in the numerical coefficients) mean- 
ing that an average s will also be of this general form. According to the arguments 
here, as the temperature is lowered the ratio l/ro increases, leading to a more pro- 
nounced upward curvature in &*(U) for w > wc. The ranges of applicability of the 
'bare' pair and 'augmented' pair regimes change as well. The combined effect might 
be to produce a minimum (reported in some cases; see Elliott 1988) in the value of 
6, depending on the techniques employed for its determination. In fact, however, this 
question is unresolved, and such a minimum may have more to do with the particular 
form of n(E) .  Beyond this, if the minimum is broad, s may be effectively a con- 
stant over relatively small ranges of temperature. Also, a non-monotonic variation of 
n( E )  with E can lead in this treatment to s-values less than unity but that remain 
nearly constant over a fairly wide temperature range. Moreover, the possible effem 
of correlated barrier hopping have been neglected in this treatment The combined 
effects of correlated barrier hopping and sequential correlations within the context of 
percolation theory cannot be judged at this time. 

= aDCvph13 exp( E o / k T ) [ l  - exp( - E o / k T )  N (  1 / k T )  
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3. Conclusions 

It has been demonstrated that it is possible to reproduce the general features of re- 
laxation in ionic conducting glasses by an application of a ‘bare’ pair approximation at 
high frequencies, a renormalized, or ‘augmented’ pair approximation at intermediate 
frequencies, w > wc, and a percolation or cluster treatment for w < w,. 

The existence of a BNN relationship follows whenever it is possible to represent 
the frequency-dependent conductivity in a scaled form, i.e. 

Such a scaling form follows naturally from the theory described here and in I. The 
value of p is universal, as is I c ( d ) .  The constant B in the BNN relation has contribu- 
tions from both frequency ranges and is nor, strictly speaking, universal. Nevertheless, 
when the contribution from w < wc dominates, a quasi-universal expression for B re- 
sults, with the variation in distinct systems at distinct temperatures minimal. It might 
seem reasonable to assume that the contribution from the pair approximation regime 
should also be universal because the limits of applicability of the pair approximation 
are defined by the phonon frequency and a critical percolation frequency. This is 
not, however, confirmed. The existence of such a scaling relationship allows suitably 
scaled plots of log u ( w )  versus log w for different temperatures and different systems 
to coincide. 

A general tendency for s to approach 1 as the temperature is lowered is predicted; 
the precise results depend on the distribution of barrier heights and on other factors 
such as correlations between barrier heights and hopping distances. 

In addition it has recently been demonstrated (Hunt 1992) that (3.1) without the 
additive terms uDC and with the factor uDc replaced by no u ( w c )  is generated 
in dipole glasses; such a scaling law is suficient to explain the scaling observed in 
salol and glycerol by Dixon er a/ for log E ~ ( w )  versus log w. The value p = 2 is 
associated with a maximum relaxation time T = U;’ ;  relaxation in dipole glasses is 
(as expected) local at all frequencies. This fact bears on the discussion of the results 
of Richert and Baessler for viscosities of melts, the glass transition temperature and 
the power s. 

It has recently been shown (Hunt 1991b) that it is possible to calculate a glass 
transition temperature and jump in the dynamic heat capacity from considering a 
time-dependent accessible entropy with a point of inflection at a critical ‘percolation’ 
time T‘ = w;’. In that article it was implied, although not stated explicitly, that the 
enhancement of relaxation times of compound, or many-body relaxation process on 
timescales longer than the time required for percolation of individual pair processes 
was relevant to the jump in the dynamic heat capacity. However, this condition may 
not be necessary; Debye relaxation at low frequencies (below a percolation cut-off) 
also leads to an inflection point in a time-dependent accessible entropy, and may also 
be consistent with a (smaller) jump in the dynamic heat capacity. This remains an 
open question. 

Thus, although a certain unity has been attained in the treatment of conducting 
glasses, and while evidence exists to suggest that the general physical approach may 
also have application to non-conducting glasses and supercooled liquids, substantial 
questions remain even for ionic conducting glasses. 
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